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Abstract. It is possible for a GA to have two stable fixed points on a
single-peak fitness landscape. These can correspond to meta-stable finite
populations. This phenomenon is called bistability, and is only known to
happen in the presence of recombination, selection, and mutation. This
paper models the bistability phenomenon using an infinite population
model of a GA based on gene pool recombination. Fixed points and
their stability are explicitly calculated. This is possible since the infinite
population model of the gene pool GA is much more tractable than the
infinite population model for the standard simple GA. For the needle-
in-the-haystack fitness function, the fixed point equations reduce to a
single variable polynomial equation, and stability of fixed points can be
determined from the derivative of the single variable equation.

1 Introduction

Intuitively, one would expect that a GA could have only a single stable fixed
point on a single-peak fitness function. However, in this paper we show that a
mutation/crossover/selection GA may have two stable fixed points on a single-
peak fitness landscape. We call this phenomenon bistability.

In practical terms, this means that when the GA is started with a random
population, the GA can stagnate without making any progress in the direction
of the fitness peak. However, when the GA with the same parameters is started
nearer to the fitness peak, the GA will move towards the peak. This behavior is
described in more detail in section 5.

In our model, there cannot be bistability without both mutation and recom-
bination. For the more general Vose model, there cannot be bistability without
recombination 1 and it is conjectured that there cannot be bistability without
mutation. Bistability only occurs for some settings of the parameters where there
is the appropriate balance between mutation, recombination, and selection. For
our model, the minimum string length for bistability is 4. As the string length
increases, the range of mutation rates where bistability occurs increases rapidly.

Bistability is not an isolated phenomenon. While we use gene pool recom-
bination and a needle-in-the-haystack fitness for our model, neither are neces-
sary for bistability. We show that bistability occurs with uniform and one-point
1 this follows from the Peron-Froebenius theorem
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crossover, and Wright, Rowe, Poli and Stephens [WRPS03] show that bistability
occurs with fitness functions that show a more gradual increase in fitness as one
gets close to the fitness peak This paper extends on [WRPS03] where bistability
was analyzed in the case of proportional selection. This paper treats the case of
truncation selection.

Bistability was first discovered and investigated by [BBN96] in the context of
viral quasispecies and the AIDS virus. Other papers on bistability include [OH97]
and [WRN02]. The last citation has a more complete review of the literature in
this area.

Vose [Vos99] and others have developed an elegant dynamical system model
for GAs. This model is commonly referred to as the “infinite population model”
of a GA. Vose has proved elegant theorems relating fixed points to finite pop-
ulation GA behavior when the population is large. However, except in special
cases, only numerical methods can be used to actually find the fixed points. Due
to the large dimensionality of the space, numerical methods can be used only
for relatively small string lengths. Further, it is difficult to use the applicable
numerical methods to achieve understanding of the processes involved.

The model used in this paper makes a “linkage equilibrium” assumption
that makes the infinite population model more tractable. Linkage equilibrium
has been widely used as a simplifying assumption in approximate models of GAs.
These include [SI99] and [PBR01].

We show that for the needle-in-the-haystack fitness functions, fixed points
can be found by solving a single variable polynomial equation, and the stabil-
ity of these fixed points can be determined from this single variable equation.
Thus, we can rigorously determine the number of fixed points and their stability,
something that has not been possible for the Vose model when there is nontrivial
selection, mutation, and recombination. We can determine and plot the ranges
of parameters where bistability occurs. The price that we pay for the linkage
equilibrium assumption is that we no longer have an exact infinite population
model of a standard GA that uses two-parent crossover. Instead, we have an
exact model of a GA that uses a special form of recombination called “gene pool
recombination”. This GA will be described in more detail in section 2

Gene pool recombination is an alternative recombination method for GAs.
An individual created by gene pool recombination is chosen from a probability
distribution determined directly from the whole population rather than from two
parents. Geiringer’s theorem [Gei44] shows that gene pool recombination in the
infinite population model can be viewed as the limit of repeated applications of
two-parent recombination (without selection). For the infinite population model,
gene pool recombination takes the population to linkage equilibrium in one step.

Gene pool recombination was proposed in [Sys93]. [MM01], [MM00] have in-
vestigated the UMDA (univariate marginal distribution algorithm) which is a
GA that uses gene pool recombination and some kind of selection (proportional,
tournament, truncation, or Boltzmann) and no mutation. They have experi-
mentally verified that UMDA can successfully optimize a wide variety of fitness
functions but is misled by deceptive problems. Further, gene pool recombina-
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tion is used in population-based incremental learning (PBIL) [BC95], a machine
learning technique.

Our empirical results in section 5 and the empirical results given in [WRPS03]
suggest that the gene pool GA model is a reasonable approximation to the two-
parent recombination GA for the classes of fitness functions investigated in this
paper. Thus, the gene pool GA model can be viewed as an approximate model
of the two-parent recombination GA.

2 The Gene Pool GA

In this section we give a more precise description of the gene pool GA. Our
model is an exact model of this GA in the limit as the population size goes to
infinity.

We assume a binary string representation. The string length is �.
Gene pool recombination uses a sampling process to go from one population

(the current population) to another (the new population). Each individual of
the new population is created independently of the others, and in fact, each bit
of each individual is created independently of the other bits.

The first step in the sampling process is to calculate the relative frequency
of a 0 bit at each locus (string position) in the current population. For a given
locus, this frequency is just the relative frequency of an order-1 schema whose
only defined position is a 0 at this locus. For an individual of the new population,
the probability of a 0 at this locus is the same as the relative frequency of a 0
at the same locus of the current population.

Note that expected result of gene pool recombination depends only on the
relative frequencies of the order-1 schemata. Thus, the infinite population model
can be defined in terms of these frequencies.

Note that since bits of individuals in the new population are chosen indepen-
dently, there is no expected correlation between the bits at different loci. This is
exactly the definition of linkage equilibrium, so in the infinite population limit,
gene pool recombination produces a linkage equilibrium population.

Then the steps of the gene pool GA used in this paper are as follows:

1. Choose a random population.
2. Apply gene pool recombination.
3. Apply truncation selection.
4. Apply mutation.
5. Return to step 2 if termination criteria is not met.

3 The Infinite Population Model

Our infinite population model is represented in the Walsh basis. (See the ap-
pendix for the definition of the Walsh transform.) Since we only need to rep-
resent information equivalent to the order-1 schema frequencies, this is not as
complicated as it seems. The model uses the order-1 Walsh coefficients, and these
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coefficients are expressed simply in terms of the order-1 schema frequencies. This
is explained below.

Let Ω be the search space of all length-� binary strings. If j ∈ Ω is a binary
string, #j represents the number of ones in j. Let L denote the set of strings j
with #j = 1.

A population is represented by a vector indexed over Ω. Thus, if x is a
population, xj is the relative frequency of string j ∈ Ω.

For k ∈ L, let x
(k)
0 and x

(k)
1 denote the schema frequencies of the order-1

schemata whose only defined locus is the locus of the 1 bit in k. (The string k
can be thought of as a mask. The locus corresponding to k is the locus masked
by k.) Thus, if k = 00010, then x

(k)
0 is the frequency of the schema ∗∗∗0∗ and

x
(k)
1 is the frequency of the schema ∗∗∗1∗.

Let x̂k denote the kth coefficient of the Walsh transform of x. It can be shown
[WRPS03] that for any population vector x and any k ∈ L,

x̂k = 2x
(k)
0 − 1 and x̂k = 1 − 2x

(k)
1 . (1)

Note that x
(k)
0 + x

(k)
1 = 1 by definition. For this purposes of this paper, these

formulas can be taken as the definition of the order-1 Walsh coefficient x̂k.
The value of x̂k ranges from −1 when the frequency of a 0 in the locus masked

by k is 0 to +1 when the frequency of a 0 in this locus is 1.
Now we can look at modeling the steps of the algorithm given in section 2.

There are two important observations to make.
First, the result of the gene pool recombination step depends only on the

frequencies of the order-1 schemata and hence of the order-1 Walsh coefficients.
Thus, our model only needs to keep track of the order-1 Walsh coefficients.

Second, the expected frequencies of the order-1 schemata do not change in
the gene pool recombination step, and thus the infinite population model of gene
pool recombination is trivial: the order-1 Walsh coefficients remain unchanged.

So it remains to model mutation and selection.
The Walsh basis formula for mutation is very simple. If the mutation rate

is µ, the effect of mutation in the infinite population model is to multiply x̂k

by 1 − 2µ [WRPS03]. One can see that the effect of mutation is to move the
order-1 schema frequencies towards 1/2. In fact, if the mutation rate is 1/2, then
mutation makes x̂k to be zero, which corresponds to schema frequencies of 1/2.

3.1 The Needle-in-the-Haystack Fitness and Truncation Selection

The needle-in-the-haystack (NEEDLE) fitness function assigns a fitness of 1 to
all strings except the all-zeros string. The all-zeros string has a fitness greater
than 1. (The exact value is unimportant since we are using truncation selection.)

In truncation selection, a fraction T of the population is kept and the remain-
der is discarded. For the NEEDLE fitness function, we only need to determine
how the frequency of the all-zeros string is increased by selection. In our infinite
population model of truncation selection, we assume that the frequency of all
other strings is decreased by the same multiplicative factor.
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Thus, let x denote the population before selection, and let x0 denote the
frequency of the all-zeros string in this population. Let y denote the population
after selection. Then it is not hard to see that y0 = min

(
1, x0

T

)
where T is the

truncation fraction. For any other string j �= 0, yj = xj

(
1−y0
1−x0

)

.

Recall that x
(k)
1 is the frequency of the order-1 schema whose value is 1 in

the locus masked by k. Since the all-zeros string is not a member of this schema,
the effect of selection on the frequency of this schema is the same as the effect
on any nonzero string. In other words, y

(k)
1 = x

(k)
1

(
1−y0
1−x0

)

.

This formula can be transformed into a formula on the Walsh coefficients
using the second equation of (1).

ŷk = 1 − (1 − x̂k)
(

1 − y0

1 − x0

)

Let G denote the mapping that represents the complete model. Thus, if x is the
population at the beginning of step 2 of the algorithm, then G(x) is the expected
next generation population at the same point in the algorithm. We can get a
formula for G by multiplying by 1 − 2µ to include the effect of mutation.

Ĝ(x)k = (1 − 2µ)
(

1 − (1 − x̂k)
(

1 − y0

1 − x0

))

We are not done since this formula still includes the standard basis quantities
x0 and y0, and we want a formula in terms of the order-1 Walsh coefficients. The
key to eliminating these quantities is to note that selection occurs right after
gene pool recombination in the algorithm, and gene pool recombination takes a
population to linkage equilibrium. Thus we can assume that the population x
(that selection is applied to) is in linkage equilibrium.

In [WRPS03], it is shown that

x0 = 2−�
∏

j∈L
(1 + x̂j) . (2)

There are two cases. The first case is when x0 ≤ T . In this case, y0 = x0
T ,

and some algebraic manipulation shows the first case of the formula below. The
second case is when x0 > T , and then y0 = 1. This implies the second case of
the formula below.

Ĝ(x)k =

{

(1 − 2µ)
(

1 − (1 − x̂k)
(

T−∏
j∈L(1+x̂j)/2

T (1−∏
j∈L(1+x̂j)/2)

))

if x0 ≤ T

(1 − 2µ) if x0 > T
(3)
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We can show that if x0 ≥ T , then x̂k = 1 − 2µ is a fixed point since

x0 = 2−�
∏

j∈L
(1 + x̂j)

= 2−�
∏

j∈L
(1 + 1 − 2µ)

= (1 − µ)�

> T .

In the case where x0 ≤ T , formula (3) leads to the fixed point equations:

x̂k =
(1 − 2µ)

(

1 −
(

T−∏
j∈L(1+x̂j)/2

T (1−∏
j∈L(1+x̂j)/2)

))

1 − (1 − 2µ)
(

T−∏
j∈L(1+x̂j)/2

T (1−∏
j∈L(1+x̂j)/2)

)

The right hand side of this equation is the same for all k. Therefore, if x̂ is
a fixed point of G, then x̂ is symmetric in the sense that all x̂k for k ∈ L are
equal.

If the GA model is started with a symmetric population, symmetry will be
maintained. (In a symmetric population, all of the order-1 schema frequencies
will be equal.) In this case, the recurrence equation can be written in terms of
the variable w,

Ĝ(w) =

{
(1 − 2µ) if T < 2−�(1 + w)� ;

(1 − 2µ)
(

1 − (1 − w) T−2−�(1+w)�

T (1−2−�(1+w)�)

)

otherwise.

The fixed points occur when Ĝ(w) = w, or equivalently when equation (4) below
holds.

Theorem 1. The fixed points of the infinite population model of the gene pool
GA algorithm are the solutions to the variable polynomial equation:

w =

{
(1 − 2µ) if T < 2−�(1 + w)� ;

(1 − 2µ)
(

1 − (1 − w) T−2−�(1+w)�

T (1−2−�(1+w)�)

)

otherwise.
(4)

As we will see, understanding the solutions to this equation is far easier than
understanding the solutions to the system of polynomial equations that come
from a more general model.

As an example we solve (4) numerically using �=8, µ=.1, and T=.4. We find
w = .02869 and w = .7222. A third equilibrium occurs at w = 1 − 2µ = .8.
A graph of G(w) = w is shown in Fig. 1. We see three fixed points; the first
and third fixed points are stable and the middle fixed point is unstable relative
to symmetric populations. However, stability in the figure does not necessarily
imply stability in the space of all (possibly non-symmetric) populations.

We are interested in the stability of the fixed points in the space of all pop-
ulations. It is well known for a discrete model that if all of the eigenvalues of
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Fig. 1. Graph of Ĝ(w) and 45◦ line for µ = .1, � = 8 and T = .4.

dgx have modulus less than 1, then x is an asymptotically stable fixed point of
g. The following theorem found in Cripe [Cri03] shows the eigenvalue of dĜ is
equal to the derivative of the single-variable function Ĝ defined in (4). Therefore
the fixed points can not only be found by solving a single-variable polynomial
but additionally their stability can be determined by taking a single variable
derivative.

Theorem 2. At a symmetric point x̂ where x̂k = w for all k ∈ L, The largest
modulus eigenvalue of Gx̂ is equal to dG

dw .

Since the largest modulus eigenvalue of dĜ(x) is equal to the derivative of the
single variable function G, the stability of the fixed points in the cube [−1, 1]� is
the same as the stability of the fixed points in the one variable space of symmetric
populations.

We have shown that we can find the fixed points of the model by solving a
single variable polynomial of degree � + 1 and furthermore, the stability of the
fixed points can be determined from this equation.

4 Explorations of Parameter Space

In this section we analyze the fixed points for our model to determine the pa-
rameter settings where bistability occurs. Due to space constraints the proofs of
lemmas are not given when they are straightforward. Proofs are in [Cri03].

We begin to explore the parameter space by finding a relationship between T
and w when w is a fixed point. Solving (4) for T, in the case T > 2−�(1+w)�,we
find

T (w) =
−(1 − 2µ)(1 − w)

(w − 1 + 2µ − 2µw
x0

)
. (5)

That is, we define T (w) to be the value of T for which w is a fixed point. Lemmas
1 and 2 show that the fixed points can occur in the region 0 < w < 1 − 2µ.
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Lemma 1. x0 = 2−�(1 + w)� < T (w) for 0 < w < 1 − 2µ and x0 > T (w) for
1 > w > 1 − 2µ.

Proof.

T (w) − x0 =
x0(1 − x0)(1 − 2µ − w)

−wx0 + x0 − 2µx0 + 2µw
.

If 0 < w < 1 − 2µ, the denominator,

x0(1 − w) − 2µ(x0 − w) > x02µ − 2µx0 + 2µw = 2µw > 0.

(1 − 2µ) > w implies (1 − w − 2µ) > 0. The numerator is nonnegative. For
w > (1 − 2µ), the numerator is negative and the denominator is positive. ��

Lemma 2. T (w) > 0 for 0 < w < 1 − 2µ.

Recall that if T < (1 − µ)�, then one fixed point occurs at w = 1 − 2µ. In
order for bistability to exist, there must be two additional fixed points, both less
than 1 − 2µ. These are solutions to equation 5. The left hand drawing in Fig.
2 shows the plots of T (w) for various values of µ. Bistability occurs for a fixed
value of T if a horizontal line drawn at height T intersects the curve three times.
The plot of T (w) ends with a vertical line at w = 1 − 2µ.

The right hand drawing in Fig. 2 shows the progression from three fixed
points to one fixed point when T is increased. A fixed point occurs when G(w)
intersects the 45◦ line. When T = .4 there are three fixed points, one near zero,
one at approximately w = .5, and one at the critical value of w = 1 − 2µ = .8.
When T = .43 the middle fixed point merges with the fixed point at w =
.8. When T is further increased to .45, the last fixed point has disappeared
completely, leaving only the fixed point near w = 0.
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Fig. 2.

The (w, T ) points where the curve has a zero slope can be critical values. As
T increases through such a value, a pair of fixed points can appear or disappear.
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Therefore it is useful to differentiate (5) and set the result equal to zero. This
gives

0 = −�w2 + (� + x0 − 1)w + (x0 − 1) . (6)

The reader should note that since (6) is independent of µ, the minimums in the
left hand side of Fig. 2 all occur at the same value of w.

Lemma 3 shows the conditions under which T has a local minimum in the
region 0 < w < 1 − 2µ.

Lemma 3. dT
dw = 0 has exactly one solution between 0 and 1 − 2µ when

1 − �µ(1 − 2µ) − µ − (1 − µ)�+1 < 0.

Let wc be the critical point of T between 0 and 1−2µ. Then T (wc) is a minimum
since the first derivative of T passes from negative to positive. Since wc is the
only critical point, it must be a global minimum in the interval 0 < w < 1 − 2µ.

For the parameter values in the left hand side of Fig. 2, we calculate that
wc = .1758. If .1758 < 1 − 2µ, or µ > .4121 then T will not have an interior
local minimum. We check that the hypothesis in Lemma 3 is not satisfied. 1 −
�(1 − 2µ) − µ − (1 − µ)�+1 > 0 when µ > .4121. By numerically analyzing the
inequality, we find that the minimum string length that satisfies the hypothesis
is � = 4.

Lemma 4. In the case T < (1 − µ)�, if wc < 1 − 2µ, equivalently if

1 − �µ(1 − 2µ) − µ − (1 − µ)�+1 < 0,

then there exists a value of T that gives bistability.

Proof. By Lemma 3 there exists horizontal lines that will cross the graph of T (w)
more than once. Each place of intersection represents a fixed point. Another fixed
point of G exists at w = 1 − 2µ. ��

We also note that bistability exists if T (wc) < T < (1 − µ)�. It remains to
determine the stability of the fixed points.

Theorem 3. If 0 < µ < 1/2, then there can be at most three fixed points for
Ĝ. When there are three fixed points, they are stable, unstable and stable when
ordered by w values. If there are two fixed points, then a small perturbation of
either T or µ can give one fixed point.

Proof. Since dG
dw > 0 then at a fixed point where the graph crosses from above

to below the slope must be less than one and therefore must be stable. A fixed
point where the graph crosses from below to above must have slope greater than
one and is unstable.

Since Ĝ(0) > 0, when there are three fixed points, the graph must cross the
diagonal from above to below, then below to above. ��
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We have exactly characterized the fixed points for the gene pool model on
the NEEDLE fitness function. For fixed values of T and µ the location of the
fixed points can be found using (4).

For a fixed value of µ the range of values of T which give bistability can be
found. For example see the left drawing in Fig. 3. The area between the two
curves is the region in (µ, T ) space where bistability occurs. The top curve is
T = (1−µ)� and the lower curve is found by solving dT

dw = 0 to find wc and then
taking T (wc).

For a fixed value of T and � the range of µ which give bistability can be
found. This can be seen in the right hand drawing in Fig 3. This figure shows
the region in (�, µ) space for which bistability occurs. As noted before, a string
length of 4 or more is needed for bistability. The top curve of each pair in this
figure is µ = 1 − T

1
� The bottom curve of each pair was found for each � by

solving T (wc) = T for µ for T = .25, .3, .5, .7.
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These results are surprising. Truncation selection with a small value of T is
thought of as a very strong selection method. One might think that sufficiently
strong selection would eliminate the possibility of bistability, but these results
show bistability even with T = 0.1 and a string length of 4.

In [WRPS03] it was shown that the minimum string length for bistability
with proportional selection is 6, and this occurs with a very small mutation
rate and weak selection. (The extra increment in fitness of the needle string is a
strength-of-selection parameter for proportional selection.) Here, the minimum
string length for bistability is 4, and it can occur over a wide range of mutation
rates for different values of T . This includes strong selection and high mutation.
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5 Empirical Results

In this section we show that bistability can be observed in finite populations
GAs with one point crossover and realistic settings for the mutation rate, the
crossover rate, and the truncation fraction T .

The following procedure can be used to empirically test if a finite popula-
tion GA with certain parameter settings has bistability for the NEEDLE fitness
function. We run the GA with two different initial populations. First, we use
a randomly chosen initial population. For the NEEDLE fitness, the population
size should be large enough so that there are some copies of the optimal needle
string. Second, we use an initial population with a high frequency of the needle
string. If the GA with the first initial population does not move to a population
with many copies of the optimal string, and with the second initial population
maintains many copies of the optimal string, this indicates that the GA has
bistability. (This experiment should be repeated several or many times since
anything can happen on a single run of a GA.)

Simulations were performed using a Java program written by the first author
and his students. Simulations were performed with truncation selection with
T = 0.5, string length 8, mutation rate 0.06. (These values are in the middle
of the bistability region in the right hand side of Fig. 3.) The initial population
was either generated randomly or by choosing strings with a probability of 0.85
of a zero for each bit (biased initialization).

For these parameter settings, the model predicts fixed points at w = 0.00355
and w = 0.8268. Formula (2) gives the corresponding x0 values of 0.004 and
0.6096. First, we verified the model by doing 100 runs with uniform crossover
with crossover rate 1 and a population size 10, 000. The average x0 after 50
generations with random initialization was 0.00661 and with biased initialization
was 0.6096. (Additional experiments for other parameters reported in [Cri03] also
show very close agreement with the model for uniform crossover and genepool
recombination.)

Next we did experiments with a more realistic fitness function and a weaker
crossover. The fitness function was a simple royal road fitness with string length
36. The 36 loci were partitioned into 4 randomly chosen nonoverlapping sets (or
blocks) of 9 loci each. These blocks were in general not contiguous on the string.
A string received a fitness contribution of 1 for each block where the string had
all zeros in that block. Thus, the fitness ranges from 0 to 4, and the all-zeros
string is the only string with fitness 8. The experiments used one-point crossover
with crossover rate 0.8, a mutation rate of 0.022, and truncation selection with
T = 0.5. For biased initialization, the probability of a zero was 0.95. Population
sizes were 100, and 10000. The following are the averages of 100 runs. The results
reported are the average and maximum fitness at the end of 1000 generations.
The standard error (1 standard deviation) follows in parentheses. The results
clearly show a bistability-like phenomenon (perhaps there are more than 2 fixed
points).
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Population size initialization average fitness maximum fitness
100 random 2.54 (0.19) 3.52 (0.52)
100 biased 2.69 (0.16) 3.98 (0.14)
10000 random 1.87 (0.37) 3.38 (0.49)
10000 biased 2.70 (0.01) 4.00 (0.00)

6 Conclusion

In this paper we have shown that an infinite population GPR model closely ap-
proximates the finite population two-parent uniform crossover GA when the
fitness function exhibits a single peak. Under the gene pool recombination
model, the complicated dynamical system of the finite population GA becomes
tractable. In particular, we can explicitly calculate the fixed points and deter-
mine their stability by examining a single variable polynomial function. Finite
population simulations suggest that TPR and GPR produce bistability. The
fixed points produced in the simulations closely match those predicted by the
model.

Furthermore, we have demonstrated that the infinite population GPR model
correctly predicts the presence of bistability in the finite population GA. We
have derived explicit formulas that relate the parameter values under which the
bistability phenomena occurs.

There is a lesson for the practitioner. When the GA is initialized with a
random population, bistability is a phenomenon that should be avoided since
it may prevent the GA from finding peaks in the fitness. One way to do this
is to keep the strength of recombination down. This can be done by reducing
the crossover rate, or by choosing a “weaker” crossover (such as one-point or
two-point instead of uniform). We are not saying that weaker recombination
is always better since there have been studies, such as [SI99], that show that
recombination can accelerate convergence to an optimum, even on a needle-in-
the-haystack fitness function.
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Appendix

The Walsh matrix W is a 2� by 2� matrix defined by Wi,j = (−1)#(i⊗j). The
Walsh matrix is symmetric and W−1 = 2−�W. If x is a population vector, then
the Walsh transform of x is Wx and is denoted x̂. Note that this definition uses
a different scaling factor than the Walsh transform given by Vose [Vos99].
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